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THE determination of the motions of three bodies wmutually attracting according
to the law of gravity being a problem too complicated for exact solution, mathe-
maticians have employed various methods of solving it approximately. It is well
known that of these methods the one which appears to be the most obvious and
direct, introduces terms which may increase indefinitely with the time, and render
the solution inapplicable to any observed case of motion. This difficulty occurs
whether the problem be to find the perturbation of the moon’s motion by the sun, or
the perturbation of the motion of one planet by another, and the necessity of meeting
or evading it has‘very much determined the courses which the solutions of these pro-
blems have taken. In the theory of the moon’s motion, LarLacg, PonTEcouLanT, and
others, have appealed to the results of observations of the motions of the moon’s
perigee and node, to justify the assumption of a form of solution which is not
attended with the above-mentioned difficulty. Although this way of proceeding may
lead to correct results, there can be no doubt that it is an abandonment of the prin-
ciple of determining by analysis alone the form of development which is appropriate
to the conditions of the problem. Again, in the theory of the motions of the planets,
recourse is had on the same account to the method of the variation of parameters,
more especially for determining the secular inequalities. Now it will perhaps be
admitted that that method, elegant and exact though it be, is yet not indispensable,
and that when it succeeds, there must be some direct method which would be equally
successful and conduct to the same results. The discovery of such a method I have
long considered to be a desideratum in the theory of gravitation, and having after
much labour found out one by which the forms of the expressions for the radius-vector,
longitude and latitude, and both the secular and the periodic inequalities, are evolved
by the analysis alone, and which is applicable as well to the lunar as the planetary
motions, I thought it might deserve the attention of the Royal Society. I propose
in this communication to enter at length into the details of the method, and then to
add a few remarks on its general principle, and to explain why, in common with the
method of the variation of parameters, it succeeds in determining the motion of the
apses of a disturbed orbit.
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524 PROFESSOR CHALLIS ON THE PROBLEM OF THREE BODIES.

1. Let M represent the mass of the principal body, or its attraction at the unit of
distance, m that of the body whose motion it is proposed to investigate, and m' that
of the disturbing body. The principal body is supposed to be at rest, and the rectan-
gular coordinates and distances of the other two reckoned from its centre as origin,
are respectively x, y, 2, r and &/, ¥/, 2/, v/, at the time ¢ reckoned from a given epoch.
Then if w be put for M~+m, and R for the expression

aa fyy+2d)__ m
713 ((a’-——w)2+(y'-——y)2+(z’—z)g)"l”
we have for determining the motion of m the known equations,
z dR
t2+“ =0. . . . . . ... . (1)
dtQ + +——O- e e e e e e e e (2.)
d*z

dt2+ +7l =0. . . . . . . . . . (3.)

Analogous equations apply to the motion of m' as disturbed by 7. The directions of
the axes of coordinates are entirely arbitrary. Conceive, therefore, to be known at
a given instant (T,) the position of the plane passing through m in the direction of
its motion at that instant, and through the centre of M, and let this plane be the
plane of @y. Conceive also to be known at a given instant (T;) the position of the
plane passing through m' in the direction of its motion at that instant, and through
the centre of M, and let this plane make with the other the angle . Also let the
intersection of the two planes be the axis of x. v

2. Now since according to these suppositions, the body m would continue in the
plane ay if the disturbing force of m' ceased at the time T, it is clear that the coordi-
nate z at any time Ty-4-7 is a small quantity of the order of the disturbing force. By
multiplying the equations (1.), (2.), (3.) respectively by 2dx, 2dy, and 2dz, adding,
and integrating, we obtain

dz> 2 (dR
t9+dﬂ+dﬁ "‘+2§ @ trc=0, . . . . . . . (4)
dR) being the differential coefficient of R with respect to «, y, and = considered as
at g P Yy
functions of the time. But from what is said above, ‘Zlﬂ and ddR ‘flz are of the order

of the square of the disturbing force. Hence as it is proposed to conduct the
approximation according to the powers of the disturbing force, these terms in the
first and second approximations must be omitted. Also, if 4 be the polar coordinate

2
of m reckoned on the primitive plane of its orbit from the axis of «, and f:; &c. be

neglected, x=rcos d, y=rsin 4, r being now regarded as the projection of the distance
~on the plane of zy. Consequently
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do*+dy*=dr*+r*de’,
(dR) dR &  dR dr

=@ @t e s’

and the equation (4.) becomes
dr? iz 2 dR d@ dR dr
Again, the equations (1.) and (2.) give

By & dR_ R
v g —y gt &Y w="

.

B N S de dR__dR

ut Y@ TY@ET a o My Y =

Hence, by integrating, Tdt =h— de dt, e (i 9

. . o de? .
h being an arbitrary constant. Consequently, by substituting for —; in (5.) from (6.),
and neglecting the square of the disturbing force,

B9 AR dR d§  dR dr
dt9+7'9 +C— = dt—2y<da atE )%
dR df di(dR di A
But j‘ﬁa—t—i—l‘ dt::ﬁj‘ dt §d12<§ dt> dt, and =72 nearly.
Hence it will be seen that to the first power of the disturbing force we have
o2 a4 dR d
e %o 2{{,#20' ) ax d’;}dt @)

The equations (6.) and (7.) are suitable for determining the forms of the develop-
ments of » and 4 in terms of the time.

The function R becomes, by neglecting m'z,
w' (@ +yy) m )
(=2 )
and reckoning ¢ from the axis of « on the plane of the orbit of m' in its position at
the time T, we have to the same approximation,

¥=r'cos ¥, y'=r'sindcosw, z'=r'sindsina.
Hence

m

(7" 472 —2rv' (cos 6 cos 6’ +- sin § sin §' cos w) )* '

If powers of » above the second be neglected, the following approximate value of R
is obtained :

m'r . )
R=W (cos 4 cos 8'+sin 0 sin 4 cos w) —

] !
R=27 cos(0—0')— S 3
7z cos(0=10). (12 +r2—2r' cos (0 —8) )
—2m' sin @ sin 0’sin2g<%— s ?:) .
™ (12 412 — 2l cos (1))

3z2



526 PROFESSOR CHALLIS ON THE PROBLEM OF THREE BODIES.

3. The foregoing preliminaries having been gone through, the order in which the
approximate integration is to be effected may now be stated. As the approximation
is to proceed according to the disturbing force, the equations (6.) and (7.) must first
be integrated omitting the terms involving R. We shall thus obtain values of r and
g as functions of # and arbitrary constants, just as in the case of the problem of two
bodies, and these constants may be designated by the letters usually employed in that
problem. As the exact values of the functions would be unsuitable for carrying on
the approximation, they may be expanded in series proceeding according to the
powers of the arbitrary constant e to as many terms as we please. In like manner
the functions which express the valunes of 7' and ¢ in terms of ¢, may be expanded
according to the powers of €. When thesé values of 7, 4, » and ¢ have been substi-
tuted in the right-hand side of the equation (7.), that side becomes a function of ¢
and constants ; and supposing the integrations indicated to have been effected, and
the result to be Q, we shall have

a® R 2
TEtE—r+C=2Q,

Q being a small quantity of the order of the disturbing force.

Hence dt:d"‘{“f—z-l-g;—C-FQQ}_%
=i (=) (o)

Q* &c. being neglected. In the second term we may substitute for » in terms of #
from the first approximation, which gives

d(-— +%-c)” _.dt<— e . ~C)=05-de.

Supposing, therefore, that by the first approximation J;@:f(t), we obtain

En =)

This equation being integrated, a relation is found between », ¢ and arbitrary con-
stants, by means of which r is to be expressed in a series proceeding primarily
according to the disturbing force, and subordinately according to the quantities e e
and ». This value of r is next to be substituted in the equation (6.), which, being

put under the form
hdt dR | \dt
di="—= ok (5"179" dt)ﬁ’

shows that the right-hand side then becomes a function of ¢ and constants, and that

by integration § may be obtained in a series proceeding according to the same law of
arrangement as the series for .

dt(14+Qf(t) =
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The plane of xy has hitherto been supposed to be coincident with the plane of m’s
. orbit at the time T,. On this supposition values of » and ¢ have been obtained, which
fully take into account the first power of the disturbing force and the mutual incli-
nation of the orbits. We are now at liberty to suppose the plane of xy to have any
other position making a small angle with the planes of the orbits of m and »' in their
positions at the epochs T, and T, and the equation (3.), viz.

d?z  pz  dR
wtEt+E=0

may be employed for finding a series for % in terms of . In the second term of this
equation the value of r given by the second approximation is to be substituted, but
in the third term it is only required to substitute the values of r, 4, v and ¢ given by

. . . . dR .
the first approximation. Also for z and 2’ we may substitute in %—Z— the functions of
t which express the values of these quantities on the supposition that the motions are
. dR
undisturbed, and that they are referred to the new plane of zy. Thus -~ becomes

a function of # and constants, and the above equation takes the form

2
TR ()4 =0,
which admits of being integrated only by successive approximations.

The process by which it has been shown that », 4 and = are approximated to, gives
at the same time, mutatis mutandis, the values of 7/, ¢ and ' to the first power of the
disturbing force of m. By means of these six quantities the approximation may be
carried to terms inclusive of the square of the disturbing forces.

Having thus exhibited the general scheme of this approximate solution of the
Problem of Three Bodies, I proceed to exemplify its practicability.

First Approximation.

4. The first approximation, which omits the terms involving the disturbing force,
and is therefore identical in form with the solution of the problem of two bodies, is
obtained by integrating the equations '

P 2u ~% . hdt
dt=dr(—p+7—0) , d9=?~
The first equation gives, by integration, '

_ 1 —
n(¢+T)=cos™ %el—;\/a?e?— (a—r)*

Let ¢

. . h*C § "

where for the sake of brevity a is put for %, e* for l—-—[F, and » for %{or Vf’ .
az

be the constant introduced by the integration of the second equation, and in order

to designate the constants in the present problem by the letters usually employed in
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the elliptic theory, let ¢—= be put for»T. Then substituting p for nt+s—w, we have,
as is known, the following expansions of r and 4 to the third power of e:

2
2—_— 1—ecos p-l—%(l —Cos 2p)+3—;-3(cosp—cos 3p)

. 562 Sr18 .
d=¢c-+nt-+}+2e s1np+—4— sin 2p+z (? sin 3p—sin p).

These values of r and ¢ (excluding the terms involving ¢*, for the sake of avoiding
long calculations) will be employed in proceeding to the second approximation. It
is evident that C, %, = and ¢ must be regarded as the arbitrary constants of the inte-
gration however far the approximation be carried, no other arbitrary quantities being
introduced by the process. The quantities @ and e are given functions of C and 4,
and at present they have no other signification.

5. Before proceeding further, an inference may be drawn from the equation (7.)
which will be useful hereafter. When the foregoing values of » and 4 are substituted
in the right-hand side of that equation, the constant e will be a multiplier of that
side, independently of any limitation of the orbit of m'. Now let, if possible, e=0.

h2 .
Then 1=-§, and the equation (7.) becomes
a?  1/p 2
EZQ—I——C(;—C) =0.
Since the relation p*=h*C shows that C must be positive, it follows from the above

equation that E’g:o and %:C, or that the orbit of m is a circle whose radius is equal

to % But the orbit of m cannot be exactly a circle independently of the form and

magnitude of the orbit of ', unless the disturbing force be indefinitely small. Con-
sequently the supposition that e=0 draws with it the inference that the disturbing
force vanishes. At the same time, the supposition that the disturbing force vanishes
must leave e an arbitrary quantity, because on this supposition the problem is that of
elliptic motion, and e is the eccentricity of the orbit. These conditions may be ana-
lytically expressed by such an equation as e’=ej+-km/, k being positive and of fixed
value, and e, being arbitrary¥.

Second Approximation.

6. The first step towards expressing the right-hand side of the equation (7.) as a
function of ¢, is to expand the quantity R in a series proceeding according to cosines
of multiples of the arc —¢. Let

R=R,+R,cos(§—0)+R,cos 2(0—9’)‘+ &e.
=R,+2.R,cos s(0—9),
the values of s being the integers 1, 2, 3, &c. Also let r=a(l4u), r=d (14,
* See Note (A) at the end of the paper.
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d=nt+etv, =n't+¢+o'; and for the sake of brevity put ¢ for nt+e— (n't'+¢).
2 2
Then u=—e cosp+%—£2-cos 2p, uw'=—¢€cosp,
—0=g+4v—v'=qg-2esin p—2¢'sinp'.
It is not necessary for our present purpose to employ expressions containing higher
powers of e and €.

. . . . dR ;. . -
7. It is next required to obtain an expression for |—r-df in terms of . Since each

of the factors R,, R,, R,, &c. is a function of », ' and constants, it follows that

dR

o7 =—2-R,ssins(0—1).

Also,if A, represent the value of R,when a is substituted for  and a' for r', we have nearly

R=A + au+ "' au'

—_— s IdAs

=A,—ae da da!
Again, s sin s(0—¥)=ssin s(¢+v—2')

== sin sq cos s(v—1v') +s cos sq sin s(v—2').
Hence, by substituting the foregoing value of v—¢/, and retaining only the first power
of e and ¢, it will be found that
ssin s(§—0)=ssin sq-} esg(sin (p+sq)-+sin (p-sq))

e’sﬂ(sin(p'—l—sq)+sin(p' —sq)).
By supposing s to have all negative as well as positive integer values, this equation
may be more briefly written thus:

ssin s(d—14) =—;~ sin sq+es*sin (p+sq) — €'s*sin (p’+sq).

Now observing that ssinsg cos p=ssin (p+sq), because s==1, +2, +3, &c., the
following result will be obtained by multiplying the foregoing values of R, and
ssins(0—4):

R,ssin s(()—ﬂ’):sé“ ( SA—>- £léi)esm(p-{-sq)

—( s2A3+§.%s—) ¢ sin (p/+s).
Consequently,
2;—%} dt= —-j'E.Rss sin s(0—4)dt

252A dA,

da
_.2 ~—7 COS sq+2. mecos( p+sq)

2s2A .+ a’sfzé—

da'
—E.WG'COS (p +Sq)
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. d* . . . . . .
Hence, since - = — 2en® sin p—5¢’n’ sin 2p, the following equation will be obtained

to terms of the second order with respect to e¢ and €' :—

dR A,
2dtq —Ee—dtz—E.nL__;,esm (p+sq)

2

+2.5~_F£:n“,) (2s2A asdj> €’ sin sq

: LA, o

—3. (n+s?n—n’) (2S2As da > + 7 A ) e’sin (2p+sq)
2

+32. '+s(n nr)(2s‘~’A +a's — ,)ee’ sin p cos (p'+sq).

- dR dr . . dR
8. Similarly we have to express —--— as a function of £ Since - represents the

partial differential coefficient of R with respect to r,

dR dr _ dR, dr ,
A= =3 .4 cos s(6—10),

the values of s being 0, 1, 2, 3, &c.

BPA, a2 | d°A, d°A, o
el s ’ ! —_—
But R.=A + da " au +da’ w+ da® " 2 +dada’ adwd +—m da? 2
aR, dr_ dufdh, | PA, | PA,
Hence o a=? dt(da +aE Ut Gadd @ )

Also ‘fﬁ =en sin p4€e’n sin 2p nearly.

Consequently to terms of the second order with respect to e and ¢,

dR dr dA dA, ad’A, d?A,
- m=aen—-sinp+aen| 77 —5 s ) sin 2p— aeden 7isinp cosp'.

Also to the first power of e and ¢, |
2 cos s(§—¥8')=2 cos sg—2 sin sq.s(v—2')
=2 cos sq-2es (cos (p+sq)—cos (p—sq))
—2¢'s (cos (p'+s9)—cos (p' —s_q));

s being equal to 0, 1, 2, 3, &c. Or, if s==40, 41, +2, &c. on the right-band side of
the equality, ‘ )

2 cos s(0—0')=cos sq-}2es cos (p-+sq) — 2€'s cos (p'+5q).
Hence, placing the terms corresponding to s=+0 apart from the others, and obser-
ving that sin (p--sq) cos p' is equivalent to sin p cos (p'+sg) when s=+1, +2, &ec., it
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will be found that
dR dr

dA, dAy A, . o dPA
2 . =2aen .’ sin p-+-aen (2 —l—a 7@9) sin 2p—2aed'en 7 sinp cos p'
dA;, . dA; .
+3.aen —sin (p+sq)—2.ae’ns . sin sq

A e 2A,
+3. (ae%(l +s) %a— %_é_ﬁ ddag ) sin (2p4-sq)

—2. (2aeensL+aa eenZ 3 ) sin p cos (p'+s9),

the values of s being now +1, +2, &e. ' ‘
9. We are now prepared to express the right-hand side of the equation (7) in
terms of #. The results obtained in arts. 7 and 8 give,

a2 dR dr
27 di? dt dr aw

2

dA, . dA, d d?A,
—2aen — smp—ae% (2 —a d:; ) sin 2p+2aed'én 7—isin p cosp'

2 d?A,)
—Eesm(p-l-sq){ _n.A +an — } 3.¢ sm(2r+sq){ n:A+ da a? daa}

2 .
—3.é*(sin (2p+sq) —sin sq) {ﬁ;}%{:}? (28”As-—as€l§—s‘> ~+ans %}

. 92 2 A
+3.e€’ sin p cos (P’+89)-{;&7;§(%:;35(2S A+ds® ¥ )+2“"“’ da Dot aandada’}

For the sake of brevity of expression the following substitutions will be made : —

L—- 1A+an dAs

agn d*A,
de — 2 daq

n+s(n n)(2s —as—- )-l—ans
) A,
P _—*————~——,+s(n n,)<.,sA+aa 7 )+2ans ——+adn 5

After multiplying the right-hand side of the foregoing equation by d?, integrating,
and substituting in the equation (7 ), the following will be the result :—

12
dﬂ+ 7 2

M=~i—, A3+an

_® 0=

r

dA, dA, d?A, 2ad! d*A . .
2ae —7-¢ cos p+ae’ " g “2 ) cos 2p— % dad:' (n cos p cos p'+n'sin p sin p')

Le cos (p+sq) Me? cos (2p +-sq) o/ C0s (2p+sg) cossq
+2. n4s(n—n') +2 2n+s(n—n') +2.N <2n+s(n‘—-n’)—s(n—n’)
Pee! ! NP : 1
_ E.ng_(nur:(n_n,))g (n cos p cos (p'+5q) =+ (' +s(n—n')) sin p sin (p -+59))-

MDCCCLVI. 4 A
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Substituting Q for the sum of the terms on the right-hand side of this equation, and
neglecting Q*, &c., we have

de=dr{—+%—c+q}”

B2 “t dry B o -3
=dr(—5+E—C) =7 —pt7—C)"Q
rdr Qdt

=V —h*3 2[»07;—07‘?—2(126'27&2 sin®p (1—4ecosp),

because by the first approximation

R 2u -3 dt dt
dr(_ﬁ"}‘—r‘_c) ~dr? ™ a%Pn?sin®p(1 +decos p)’
dr
Consequently
a—r 1 p—o— 1 Qdt
nt4s—w=cos™! —E-;\/a*’e“’-— (a-—-r)z-—-—~2agegn Sﬁ«inap(l-—zle cosp), . . . (8)

the constants a, e, ¢ and = having the same signification as heretofore *,

10. Before proceeding to effect the integration above indicated, it will be right to
remove certain analytical difficulties presented by the form of the equation. First, it
may be urged that as Q contains the first power of e, the coefficient of the last term
might become infinite if e were indefinitely small, and the equation would no longer
hold good. But it has already been proved (art. 5.) that e and the disturbing force

oy s | . .
vanish together, from which it follows that the quantity, ; X disturbing force, may

approach a finite value or zero as e diminishes. Again, it will be seen, if the quantity
to be integrated be put under the form x(#)d¢, that the factor ,(¢) becomes infinite each
time sin p=0, and that the development fails for the values of ¢ that satisfy this equa-
tion. But it is well known that an analytical circumstance of this kind will not prevent
our obtaining in the final analysis the correct development of 7, provided the integration
above indicated can be effected, and that the failure must admit of some interpretation
relative to the proposed problem. Now it is not difficult to point out the significance

of the failure in this instance. Let us suppose that cos™ 9—;—;:;0. Then the arc ¢

can differ from p only by a small quantity, and we have exactly r=a(1—e cos ?).
Hence as the quantities @ and e are absolately constant, it would seem that the
maximum and minimum values of r are a(1-4¢) and a(1—e) in every revolution of
the disturbed body. This inference is manifestly untrue, and the reason that it has
not been legitimately deduced is, that the above-mentioned failure occurs when 7
approaches a maximum or minimum value. The failure has, therefore, an important
bearing on the problem, as showing that the maximum and minimum values of the
radius-vector are not of constant magnitude. I proceed now with the integration.
* See Note (B) at the end of the paper.
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11. In order that our method of solution may be successful, the differential,
Qdt
gi?};(l-—zle cos p),
must admit of exact integration to terms inclusive of the second power of e. Now it
will be seen by referring to the expression in art.9 for which Q was substituted, that
this integration depends on the following integrals, which are exact. The integra-
tion can, therefore, be effected.

cos 1 4e
j‘-sr{gﬁ(l —4ecos p)dt=— sinp T cOtp+det

cos 2p di— cotp Y ncosp cosp' +n'sinpsing’  cosp
sin?p = - sin?p — " sinp

yz.cos (p+sq). .dt =j‘2.(cos (1’+8q’l+cos (P—Sq')>siz§p [s:l, 2, &C.J

n+s(n—n') sin®p n+s(n—n') ¥ n—s(n—n)

S S L R

yz cos (p+sq) cosp dt j’z (cos (p+s9) +c0$(]9 $Q)\ cosp dt [s:l, 2, &c']

n?—s*(n—n')%" sinp
n+s(n—n) sin®p n+sn—n') T n—s(n—n) | sin?p

: 1 n
-3 T )(s(sms%+cossqcotp> [s==1, X2, &ec.]

5‘2 cos (2p+sq) dt j‘z ( cos (2p +sq) + cos(QP—sq)>Sin’;p [s=1, 2, &¢.]

2n+4s(n—n') sin®p 2n+s(n—n') ¥ 2n—s(n—n')

==3. 2 (Qnsmsq+cossg cotp) [s=%1, +2, &ec.]

AP = (n—n)2 \ s(n—1')

s, cos (2p+sq)  cossqg dt —>. 2 _cos (?9+sq)
on+s n—n’) s(n—n') | sin®p™ 7 s(n—n) (2n+s(n-—n’)) sinp

dt cos (p'+sq)
J (n cos pcos (p' +.sq)+(n, +s(n—n' ')) sin p sin (p' .sq)) S -2 ~sinp
Since the factors which multiply the two last differentials are different according
“as s is positive or negative, it is important to remark that these integrals have been
obtained without giving to s the + and — signs. The factors which multiply the

three preceding differentials do not contain s.
From the results of these integrations the following equation is readily obtained :

dA d?A
Sﬁi (1— 4ecosp)_.<6ae27a—°+ae dag")t

ae dA a%e® d
+<n (= —24+7ecos p)+or TR cosp)smp
s Le cos 8¢
TS i —2(n—n)? sinp

41, 2 1
+2'n“—39(:_ = (s(nn 5 sin sg sin p-4-cos §¢ cosp) smp

42
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2Meé? n
-2 _SQ(Z_n) (s(n —) sin sg sin p--cos sq cosp)smp
+3 . 2Neé? cos (p+5q)

.s(n-—n')(2n+s(n—n'))' sinp

2ad'eedn d?A, cosp'
n2—n?"dadd " sinp

Pee! _cos (@ +59)
n“’—(n’+s(n—n’)) sinp

+3.

Since s=-+1, +2, &c., the following equalities are true:
3.cossqgcosp=3.cos(p+sq)
sinsgsinp cos (p+$9)
2 ==
Hence it will be found that the term in the above equation which involves cos ( [)—l—.sq)
is

. (M +N)e®  \cos (p+sq)
"”’2 ( S(n+s(n-—n'))+s(2n+s(n—n’)) sin p

Consequently the equation (8.) becomes

3 dA, 1 d?A a—r 1
( +oa dao+2n dago)t+s—m=cos’"l o '—;m?(a———r)_‘"
1 a 44, d?A, 2aa'dn d?A,
_m'{ﬁ' da( 2+7e COSp)+2n “do® co p+ (PN dada’cosp

_ L 2Le (M 4+ N)e
3. " E(n—n) Cos Sq+ ' -2 < s(n_*_s(n_,n,))+s(2n+s(n_n,)))008 (77+sq)

P
+32- nt—(n! +s(n—n))® * €08 (l’,+39)}'

12. Before advancing to the next operation, our attention must be directed to the
failure of the term containing the denominator n2—(n'—l—s(n——n’))2 in the case of s=1.

As the denominator vanishes for this value of s, it is necessary to retrace our steps
and consider that case separately. Referring to the equation at the beginning of
art. 9, it will be seen that if s=1 and P, represent the consequent value of P, the last
term becomes P,ee'sin p cos (p'+¢). Also, since

’p’+g=n’t+e’.—m’+nt+e—n’t—e’=p+m—m’,
we have j‘sinp cos (p'+4-g¢)dt=\sinp cos (p+o—=')dt
. )
=—,. COS (2p+w—w’) —5 sm(w-—m ).

Thus the equation (8.) will contain the term

1 Peeldt 1 t .
"—QaQBan‘ s;nﬂp ~in COS(2p+w—m’)_§ sin (w__w!)) ,
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which will give rise in the right-hand side of the equation at the end of art. 11, to
the terms

1 Pdcosp et
~2d%ensinp’ T cos (m—w')+2nt sin (w—w’)) iz Cos (m—a').

Hence, taking these terms into account, and putting the equation under the form

a;rzcos{pﬂ—e W—{-Qlﬁmlsinpl(U+€V+€'W)}, e (9)
we shall have
pi= (v Tt 3 G aacos (m— ) ) e
U= _27“ %’_z.mcossq
Ve (7: d;:,"l'gz d;j:‘O) cos p+— < (n+_.;(2nL—n )+ ({,nl\_/i;f n, )>cos (p+sq)
W= 1% (cos(m— ')+ 2nt sin (= — ) cos p, 2 %%COSP’,”'*‘(;%W“’S (P-sq).

It may be remarked, that in the terms containing the disturbing force we have put
p, for p and p for p/, which is plainly allowable, because the reasoning might be
repeated with these values in the place of p and p'. Also, it appears that the ex-
pression for which W is substituted contains a term multiplied by £, This term
might be included in p,, but it is more convenient to retain it in its present position.
I proceed to develope r in terms of ¢ by means of the equation (9.).

13. This equaticn must give a result of this form,

a—7r
=I=H+h,

H and A representing respectively the terms which contain, and those which do not
contain, the disturbing force. Hence, omitting 4, &e.,

A\/l_< ae) S py's le

Consequently, putting g for the last term within the brackets of equation (9.),

r

- eH
‘—l——-—-costp, +e/1—HE— 7 H?+g}

H/
=cos (p,4en/1—I?)+sin (p,+e/1T—T —-H“")< 2 lHQ—g> nearly.
Hence H=cos (p,+e/1—H?)
H72
and h=sin (p, +e\/l—-112)< < P e g)-

By the first of these equations H may be developed in a series proceeding according
to the powers of e, which will be found to be identical in form with the analogous
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series in the elliptic theory. In the other equation terms involving €*x disturbing
force are to be omitted, and cos p, may therefore be put for H. Hence

h=sin (p,+esinp,)(ek cot p,—g), k
or, to the same approximation as before,

h=—gsinp (142ecosp).

Thus, since £=l—e(H+k), we finally obtain

af=1_eH+%%(U+e(V+2UcOSp,)+e'W).. .. .. (0)

It will be seen that in this process sin p, has disappeared from the denominator.
14. The expressions represented by U, V and W admit of simplifications which
will render them more convenient for substitution in the equation (10.). In art. 9

we have

2n? dA;
L="yA+tan7y,

n? dA, dA,
N—m <2s“A,,—as —Ja_> +ans da’

_ §2 R N A )
Hence | N“mn-{-s(n—n’) <2n As+an(n—-n)7i;> —mL ;
5n? dA; a®n d?A, 3n? a®n d?A,
also, M= mAto g —5 e =L+, A—5 2=

Using these values, and putting s(n—=n') under the form (s(n—n')+n)—n, it will be
readily found that

2 2L M+N
n—n! <—s(n+s(n—n’))+s(2n+s(n—n’)))=

2 [/ 2n? dAN (2—s)n—n')—3n = 3u2 & d2A,
(”+S(n—n’))2—nﬂl(n—n'A‘Jr”""d7' R ) e g W}‘

Again, since A, and 2 are b i ' imensio!
gain, since A, and = are homogeneous functions of @ and a' of the dimensions —1

and —2 respectively, by a known theorem we have
dA, dA, d?A dA, d?A
! — e A g 28 Ualicie. SN hadel ) —
@ gg=—A—ap C Gdd="2 "~z
By these equations the differential coefficients of A, with respect to o' may be elimi-
nated. Thus by substituting in the expression for P in art. 9, and reducing, the
following result will be obtained :—

2n dA, d2A,
P= =) .{(232-—5)nA,+((s’—2s)(n_nl)__nr)a A }_azn oA,

Hence, putting s=1,
dA d?A
Pl =2nAl '—2na 7‘7] — aan J;‘_el,
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. 2a dA L
A]SO, since U=-—-nﬁ ﬁ—i.mcos sq,
dae dA 2Le
2¢U COS py=——= 7;0 cos pl—z.m cos(p,+sq).

Consequently, by putting for H its known expression from the elliptic theory, sub-

- dA,  d®A, ., d%A, . : e .
stituting —2 —'—a —=" for @' 7> and making use of the foregoing equalities, with

the values of V and W given in art. 12, the equation (10.) becomes as follows :—

r 1 dA ~ &2 e 38
-=1——m —2—ecos p,+35—g €08 2p,+5 (cos p,—cos 3p)

3e dA, e d°A d dA d?A .
‘ +{W toe Mda20+"—8aﬂnﬁ(2A'—2a'¢7;'“a2 —t-l‘-ﬁ—‘) (cos (m—o') +2ntsm(w-—w’))}cos P,
. 2n ,A,+adA’
— 3. g COS §
20" nt—s?(n—n')? 7
(89-~s)(n—n’)-—3n‘ 2n dA)\ 7
LI n+s(n—n) ( —w At da)
43 n—n"""* da+ 1 3 . cos (p,+s9)
@ | T P =n—n)? Ze—n? n a G By
( ) (n+s(n n)) " +’n n’A"_2 da®
i z. s »CO 8q).
+a22'n2—(n'+s(n—n'))2.1 7 +s(n—n') T2 da? b

In this equation s has the values +1, +2, +3, &e. in the terms containing cos sg
and cos (p,4s9), and the values +0, —1, +2, &c. in the term containing cos (p4sq).

On comparing this expression for the radius-vector with that obtained by LapLace*,
terms will be found in the latter identical with all the above, with the exception of
those that contain ¢ cosp,; and there are other terms to which none of the above cor-
respond. 'These are only differences in form, arising from difference in the processes
of integration. It is chiefly important to remark, that in the foregoing expression
for r there is no term containing ent as a factor. The signification of that which
contains ¢n¢ will be presently considered.

15. Having obtained the development of the radius-vector, it is easy to infer that
of the longitude (¢) from the equation (6.), viz.

@ h 1 (dR

and from the value of j‘%—? dt in terms of ¢, which has been already found. Putting
r 43 for r, and taking 3 to represent the terms multiplied by the disturbing force,

* Mécanique Cél. part 1. liv. {i. No. 50.
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we shall have to the same approximation as before,

3 28 1 (dR
=5(1—7") —7,2579' dt

h 2k 1 dR
2;5-—‘13 (1+4-3ecos p,)Br—t—lg (142e cos pﬂfz,a— dt;

et { s dt—{ (G or-+ o G dt)ae—{ (G 432[ G dt) e cos .

The development of the termj‘;; dt will be of the same form as in the elliptic theory.

An equation obtained in art. 7 gives,
A 2s?A,—as dAa"
Za*dt:g*ﬂgz.m coSs sq+ﬁ2.mecos(p,+sq)

, dA,

da
—|-§ZQE me "cos(p+sq);

25%A, dA,
s*A,—as
1 de .
j(ag dt)dt_ G2 2 e n,)gsm S(H-Qae (nmesm (Pi+sq)
dA
1
+§?722 (n me "sin(p +sq).

Since the relations of the constants A, @, n and e are expressed in our problem in the

same manner as in the elliptic theory, we have A=na’x/1—¢’. Hence we may put

na® for A in the terms involving the disturbing force. Consequently, omitting €?, &c.,
‘ on dA,

6h 6hy 1 dA, 1 o popdteg
yzlg ore cos p,dt=§§<_ﬁ.%——% E.W cos sq)e cos pdt
2n dA,
__ 6BedA, . 3ne n_n'AS a da

" an? —Jismpf—"ag(n+s(n—-n')} .mSln (P +s9)-

Also, to the same approximation,

§< y 7 dt)e cospdt=\— E ,cos sq cos pdt

A
2 (n— ’)(n—l—s nl)) sin (pl+SQ)

In all these equations the values of s are +1, 12, +3 &e.

Putting now, foi the sake of brevity, D for 2A,— dA‘ 2‘?‘?1, and F, G and H for

the coefficients of cos sg, cos (p,+sq), cos (p/+s9) respectively in the expression for 7,
a
and observing that

ytdt cos p,= z‘s1np,+cosp,
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the following equation is readily obtained :
2k 2 dA 3e dA, , e d*A, D .
P Srdt= “na %? i+ {an‘z dao_l_2nQ cla°"0 4472008 (w—=) }Sm P

De't !
+2agﬂsm (m—=') sinp,

D¢ . ,
+ zaﬁjﬂSln (P+9)
neG ne' H
Aoy S8 +“(*r“““) sin <P‘+W>+m sin (p,+s9),

the value s=1 being excluded from the last term.
Substituting the results of these integrations, the following will be found to be the
value of 4:

2 dA 562 , er13 . .
0_e+< +na dao);-l-—e—sm 2p,—|—z(§- sin 3p,—smp,)

3 dAQ d Ao
+{2 e+ :Q y P (;g T —|—4agn (cos(w—w’) 2nt sm(w—w’))}sm 12

— (A= a4 D) sin (5+9)

1 2nF A,
+§—a°"2' s(n—n)" s(n— n’)9>sm 57

+a—e§ m{[sn-l— n—s(n—n') ]F—

dA,
(2s? —-s)A,,——as-%

d 1 . )
—ﬁz'n'+s(n-n’){ 2(n’+s(n—n')) +2nH}Sm (pi+s9),

where s has the values +0, —1, 42, 43, &c. in the last term, and the values +1,
+2, +3, &ec. in the other terms, and A_, has the same value as A,.

16. The expressions for r and ¢ obtained in arts. 14 and 15 may be put under
forms more compact, and more convenient for drawing inferences, by making the
following substitutions :

}sm (psq)

1 dA,
A=a— e da+ 2
e d?A, Dt

E=e—

T2 da* — 4% S0 (7 —7)

=o— (55 5+ g 00 (=) )¢
N—-n+ da°, so that p=N¢+4e—1II

o= 2?1811 {ZAA;O"‘_SaQnQ cos (v —w )

e’g:—-2:T'nQ(A a-‘%‘\l—‘ +D>-

MDCCCLVI. 4B
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Thus we shall have,
: 2
r=A—a(E—ef) cos (Nt—l—e—l'l)—a—;— cos 2(Nt4e~II) 4 &e.

— 2 3. F cos s(Nt4e—N't—)
+23.G cos{s(Nt+e—N't—¢)+-Nt+¢—ITI}

+93 . 1 cos{(s—1)(Nt-pe—N't—¢) + Nefs—IT'}.

And putting F', G/, H' for the coefficients of sinsg, sin (p,+sg) and sin (p/4sg) in
the development of 4, we have

0= e+ Nt 2(E+ef) sin (Nt+s—ID)+ 5 sin 2 (Nt IT)+ .
+ég sin(Ntte—IT) 55 3. F'sin s(Ne e —N't—¢)
+53.G'sin {s(Nt4e—N't—¢) + Ne+e—TT}
+§; > .H'sin {(s;1)(Nt+s—N’t—e’)+Nt+s—H’}.

17. I proceed next to draw some conclusions from these values of the radius-
vector and longitude. ’

(1) The quantity A is the non-periodic part of the radius-vector, and being equal
to az—ni2 %+926—2 is a function of given quantities and arbitrary constants. A is,
therefore, invariable. It may also be remarked, that as the value of » may be put to
the same approximation under the form

1 dA 2 . e
a(l -5 329) (l—%—}- &e. 4 periodic terms),

‘ . 1 dA, . . . m . .
the quantity a—?—d;‘-’ is approximately the mean distance. Thus, so far as this

approximation shows, the mean distance is invariable.
(2) The mean motion is necessarily the factor of the non-periodic term N¢ in the

development of 4. Hence
2 dA,

Mean motion =:N=n+n—a T
For the reason just adduced, the mean motion is thus proved to be invariable.

As the two quantities A and N are functions of a and e, they are by consequence
functions of the arbitrary constants 4 and C. Hence, if the values of the non-
periodic part of the radius-vector and the mean motion be deduced from observa-
tion, the constants @ and e, or 2 and C, become known.

(8) The quantity ¢, being simply an arbitrary constant, is invariable. Analogous
considerations apply to the mean distance, mean motion, and the epoch (¢) of the
orbit of m' as disturbed by m.
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(4) The expressions for E and II show that these quantities contain terms which
have ¢ for a factor, and may therefore increase indefinitely. This circumstance creates
no difficulty with regard to II, which is always part of a circular arc affected by a
sine or cosine. But as E appears as a coeflicient, it might seem that the develop-
ments of » and ¢ contain terms which admit of indefinite increase. It must, how-
ever, be observed, that according to the remark made at the end of art. 12, the
function that has given rise to these terms is really affected by a cosine, and that
they have their origin in the development of that function in terms arranged accord-
ing to the disturbing force.

The following considerations will enable us to obtain, at least approximately, the
periodic functions of which II and E are partial developments. Whatever functions
the complete values of IT and E are of ¢, they may be expanded in series of the form
e+pBt+yt+&ec., the two first terms of which are already determined. Hence
%-64—2714—&0 %]—;—- 42yt &e.

Let ¢ be indefinitely small. Then substituting

1A, 1 dA,
na da T on da?’

B for—

dll
we shall have strictly the values of — and f01 the epoch at which ¢ commences,

. dil D¢ , dE De
viz. . 7 =B—g mcos(m—a') r=—rssin(a—a).

. . dil dE
Now if £ commenced at a different epoch, we should obtain for —- and — the same

expressions as those above, but different in value, because by hypothesis these
differential coefficients vary with the time. The changes of value, which in actual
cases take place very slowly, are due to changes in the eccentricities, and in the lon-
gitudes of the apses, of the two orbits, and will be very approximately taken into
account by substituting in the above equations for e, €, = and @/, the variable quan-
tities E, E/, ITand IT. Like considerations apply to the values of };I and —- dE’ Thus
we shall have four differential equations, by the simultaneous integration of Wthh the
four quantities may be obtained as periodic functions of the time. The arbitrary
constants introduced by the integration are determined by the known values of the
functions when ¢=0. These periodic functions are to be sabstituted for E, E', IT
and 1I', wherever these quantities occur in the developments of r, ',  and ¢, The
four equations just mentioned are identical with those obtained by the method of the
variation of parameters for determining the eccentricitics and longitudes of the
apses. It is worthy of remark, that in both methods the changes of the eccentricities
and of the longitudes of the apses which are due to the disturbances, are taken into
account in calculating the changes themselves, so that the approximation does in
4B2
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fact extend beyond the first power of the dlstulbmg force, so far as it relates to these
two elements.

If the approximation be made to include generally the square of the disturbing
force, and the values of » and 4 in art. 16, and the like values of ' and ¢, be used
for that purpose, terms may arise containing coefficients which have ¢ for a factor.
These terms may be converted into periodic functions of the time by the application
of the principles exhibited above, but in that case the differential equations by which
E, E, IT and ITI' are found will be of the second order, and the periodic functions
will be more completely determined.

The inferences (1), (2), (3) and (4) respecting the secular variations of the elements,
although obtained in a manner quite new, agree exactly with those deduced from
previous solutions of the same problem.

18. Having now obtained the developments of r, 4, » and ¢, inclusive of both
periodic and secular inequalities, to an extent which is sufficient for most of the appli-
cations of the Planetary Theory, I shall reserve for a future opportunity the investi-
gation of the inequalities in latitude, and shall then take occasion to show in detail
how this method adapts itself to the determination of the motions of the moon. At
present I propose,in concluding this memoir, to make a few general remarks on the
Problem of Three Bodies.

It has been already observed, that the solution here adopted introduces no terms
containing ent in the coefficients. These terms are to be distinguished from those
whose coefficients contain €'nt, which, as we have seen, have reference to secular
variations of the eccentricity and of the motion of the apse, and would vanish with
the eccentricity of the orbit of the disturbing body. The former relate to the motion
itself of the apse, and are not peculiar to the Problem of Three Bodies, occurring in
fact in cases where the force is directed to a fixed centre. To illustrate this remark,

let us suppose the force directed to a fixed centre to be p—-(.o'r. Then, the differen-

tial equation for finding the orbit being

dQ
dag +“ ;L2+ ]LQ - ’

let this equatiori be integrated by successive approximations, first neglecting the last
term, and then substituting in that term the value of » given by the first approxima-
tion. By this process a term containing ¢ in the coefficient will be introduced, and
the motion of the apse will fail of being ascertained. But if, instead of this process,

the equation o2
t2+,.9 _‘“—Mr +C 0

be obtained, and its approximate integration be conducted according to the powers
of ', no such term will arise, and the motion of the apse will be determined. The
latter process is-exactly analogous to steps employed in the foregoing solution of the
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Problem of Three Bodies. The difference of the analytical results of the two methods
may be thus explained. The equation obtained by putting %:O, viz. B*—2ur4Cr?

—uw'r*=0, may be shown to have three positive roots it C be positive, so that analyti-
cally there are three apsidal distances. The first method, by embracing the third
apsidal distance (no step being taken to exclude it), applies to the other two only in
an expanded form, the expansion giving rise to terms containing the factor ¢, The
other, by commencing the approximation with the equation

dr? W2 2
e tp—+ =0,

restricts the application of the solution to the part of the curve which has two apsidal
distances, and accordingly finds the function of £ which in the other method is ex-
panded. The method of the variation of parameters, by the very nature of the pro-
cess, restricts the analysis in the Problem of Three Bodies to two apsidal distances,
and on this account is successful in determining the motion of the apse.

Again, I think it important to remark that the solution of the Problem of Three
Bodies, as here proposed, applies equally to the Lunar and the Planetary Theories.
The Problem of the Moon’s motion does not differ in the analytical treatment it
requires, from that of the motion of a Planet. In the one case as well as the other the
approximation ought to be conducted primarily according to the disturbing force,
which is assumed to be small compared to the principal force, and secondarily
according to the form of the orbit, which is assumed to differ little from a circle. It
is not necessary to take account of the ratio of »' to nin arranging the developments,
but only in estimating the magnitude and importance of the terms resulting from
the integrations. The possibility of effecting the integrations is the proper proof of
the correctness of the process, and of its being adequate to give the development which
is alone appropriate to the question, and which must result from every process that
is in all respects legitimate. After making any assumption respecting the analytical
form of the solution (as in the Lunar Theory is done by introducing the constants ¢
and g), there can be no certainty that the solution will not at some stage become
empirical. Probably the reason that the process which succeeds for a planet has not
been applied to the moon, is the difficulty of extending it to the square and higher
powers of the disturbance (which in the Lunar Theory it is necessary to take into
account), and of embracing in the same operation both the periodic and the secular
inequalities. The method I have exhibited in this communication appears to meet
this difficulty by evolving simulfaneously both kinds of inequalities by a process
which obviously may be extended to higher powers of the eccentricity and the dis-
turbing force. Such an exteusion would require nothing more than great labour in
executing the analytical details.
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NOTE (A).
Received July 7, 1856.

It has been shown in art. 5 from & priori considerations, that if the constant e=0,
the disturbing force vanishes, and if the disturbing force vanishes, e is arbitrary.
Hence it appears from the development of the radius-vector in art. 16, that the eccen-
tricity of the disturbed orbit and the disturbing force are related in such a manner
that if the eccentricity =0, the disturbing force vanishes, and if the disturbing
force =0, the eccentricity remains arbitrary. The particular relation which satisfies
these conditions ought plainly to result from the solution of the Problem of Three
Bodies, and it may, therefore, be worth while to inquire how far such a result can
be deduced from the integrations effected in the foregoing approximate solution.
Now the expressions for the variations of the eccentricity and of the longitude of
the apse obtained in art. 17, are identical with those given by the method of the
variation of parameters. Hence for the present purpose I may make use of the
deductions from those expressions which are usually given in treatises on the Plane-
tary Theory. Referring to Prarr’s ¢ Mechanical Philosophy,’ art. 385, we have the
equations,

Dg—’ﬂ”—(2BD+CD') Co . (1) Eh @(2BE+CE') S (2)
Dg ”“’"(2B'D'+CD) CL (3 E’k—n“’m(2B’E’+CE) CoL (4
e’=D*+E*+2DEcos {(g—h)t+A—0} . . . . . . . . . (5)
’=D"+E*+2D'E'cos {(g—h)e+k—1} . . . . . . . . (6)

gor h_M+ {(nam'B—n'dmB?+nn'ad'mm'C** . . . . . . . (7)

In these equations B, B' and C are known quantities independent of the eccentricities
and longitudes of the apses, ¢ and € are respectively the eccentricities of the orbits
of the disturbed and disturbing bodies, &k and / are arbitrary quantities, and D, D', E, E/
are also arbitrary, excepting so far as they are connected by the first four equations.
Let, if possible, =0 independently of the time. Then it follows from (5.) that D=0
and E=0. Hence, since ¢ does not consequently vanish, it appears by (6.) that D'
and E' do not on this supposition both vanish, and, therefore, by the first or second
equation, that m'=0. Again, let m'=0. Then by (1.) and (2.), Dg=0 and EA=0,
and by (7.), one of the quantities g and % vanishes. Hence one of the quantities D
and E vanishes and the other remains arbitrary. Hence also e, is arbitrary. These
results confirm the reasoning in art. 5.
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NOTE (B).

The following method of obtaining an expression for df equivalent to that in
art. 9, was communicated to me by Sir Joun LueBock after the reading of my Paper,
and appears to be well worthy of being recorded in connection with the process of
solution I have adopted, as, on a resumption of the reasoning for the purpose of
carrying the approximation farther, it might considerably abbreviate the analytical
details.

“If dt=\/§ rdv, and v be taken for the independent variable, the equation

a2 ’ dR

becomes
2

%—a-{-r—}- ( ydR-i—rdR)

and if
(2 y dR+’°dR> Q,

r=—a—ae cos v -4 cos v ‘Q sin vdv —sin v{Q cos vdv,

and v= COS"{%-FCOS “VQ sin vdv -——-5‘Q cos vdv}

Hence di—«\/grdv-—\/z rdr + 7 sin vdv [Q sin vdv + 1 cos vd ['Q cos vdv
] ' [ {age‘l-—a—r+(cosvasinvdv—sinvf@.cosvdv)g}%

~ Neglecting powers of Q above the first,

dtz\/g-{ rdr 1 rdv(sinv/Qsinvdv+coszij,cosvdv)
(@2 — (a—r)2)* (a2 — (a—7)%)*

r(a—r)dr(cos v/ Q sin vdv —sin v/ Q cos vdv) |
——ct J

. {( rdr (sin v\ Q sin vdv+cos vj‘Q cos vdv)

A — (a—r)? )*+ae sin v

-+

d . .
4 reo v (cos v} Q sin vdv—sin vj‘Q cos vclv)}

ae sin?v

=\/,§ ' {(agee _TZ_ P +. san 5‘(»2 sin vdv}

which equation is true to all powers of the eccentricities and inclinations, v being the

eccentric anomaly.”



